Chapter 6 Graph - Shortest Path

BFS (for unweighted shortest path)

c
void Unweighted( Graph G, Queue Q, int dist[], int path[], Vertex S ){
Vertex V, U;
NodePtr ptr;

dist[S] = 0;
Enqueue(S, Q);
while ( !IsEmpty(Q) ) {
V = Dequeue( Q );
for ( ptr=G->List[V].FirstEdge; ptr; ptr=ptr->Next) {
U = ptr->AdjV;
if ( dist[U] == INFINITY ) {
dist[U] = dist[V] + 1;
path[U] = V;
Enqueue(U, Q);
}
}
}
}

Dijkstra’s Algorithm (for weighted shortest path)

算法非常简单

c
void Dijkstra(Table T){
Vertex V, W;
for(;;){
V = smallest unknown distance vertex;
if(V is not a vertex){
break;
}
T[V].Known = true;
for(each W adjacent to V){
if(T[W].Known == false){
if(T[V].Dist + Cvw < T[W].Dist){
Decrease(T[W].Dist to T[V].Dist + Cvw);
T[W].Path = V;
}
}
}
}
}

T=O(V)O(inner algo.)T=O(|V|)*O(\mathrm{inner\ algo.})

Not work for negative weight edge

Different Implenentation

  1. Array
    Good if the graph is dense
    O(V2+E)O(|V|^2+|E|)
  2. Priority Queue
    Good if the graph is sparse
    O(VlogV+ElogV)=O(ElogV)O(|V|\log|V|+|E|\log|V|)=O(|E|\log|V|)

SPFA (for graph with negative edge costs)

当遇到负环就无法终止

Topologic Sort (for acylic graphs / DAG)

T=O(E+V)T=O(|E| +|V|) and no priority queue is needed

AOE Netwoks

See also

EC[w]=max(v,w)E{EC[v]+Cv,w}EC[w]=\displaystyle\max_{(v,w)\in E}\{EC[v]+C_{v,w}\}

LC[v]=min(v,w)E{LC[w]Cv,w}LC[v]=\displaystyle\min_{(v,w)\in E}\{LC[w]-C_{v,w}\}

SlaveTime=LC[w]EC[v]Cv,wSlave Time=LC[w]-EC[v]-C_{v,w}

Critical Path

All-Pairs Shortest Path

Network Flow Problem

Biconnected Component

See also here

Defination

  • Articulation Point
  • Biconnected Component

DFS Solution

  1. Use DFS to obtain a spanning tree of G
  2. Find the articulation points in G
    • The root which has at least 2 children
    • The vertex which has at least 1 child and it is impossible to move down and reach its ancestor via back edge

Define Low(u)=min{Num(u),min{Low(w)},min{Num(v)}}Low(u)=\min\{Num(u),\min\{Low(w)\},\min\{Num(v)\}\}

  • w is child of u
  • (u, v) is a back edge

其中Low[u]表示含有 u 的双连通分量第一个被访问的节点的时间戳Num[u]

Therefore, u is an articulation point iff

  • u is the root with at least 2 children
  • u has at least 1 child v which Low[v] >= Num[u]

Euler Circuit

一笔画 Introduction see also here

  • Eular circuit - 欧拉图
  • Eular tour - 欧拉路径

DFS Solution

recursive DFS, until all edge visited